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The structural-phenomenological approach [1, 2] made it possible to obtain [3-11] the rheological equations of dilute 
suspensions of rigid uniaxial dumbbells in non-Newtonian isotropic disperse media and to study the influence of the non- 
Newtonian properties of the disperse media on the theological behavior of the suspensions. 

In this study the structural-phenomenological approach was used to construct the rheological equations of dilute 
suspensions of rigid uniaxial dumbbells in an anisotropic Ericksen liquid [12, 13]. The rheological behavior of such suspensions 
in a simple slip flow was studied in the presence of an external electric field. 

1. Rheological Model of a Disperse Medium. An anisotropic Ericksen liquid [12, 13] is the simplest 

phenomenological model of an orientable liquid with an unreformed microstructure. The behavior of  the microstructure is 
described by a unit.vector ni, called a director. It characterizes the orientation of particles of the liquid during flow. The stress 
in the anisotropic Ericksen liquid is a function of the deformation rate tensor and the director: 

(1.1) 

In the rheological equation (1.1) p is the isotropic pressure; 5ij is a unit vector; nij = ninj; nemij = nenmninj;/z,/~1,/~2,/23 are 
phenomenological constants; ~ik = (1/2)(vi,k + vk,j); vi,k is the derivative of the velocity vector v i in the direction of the 

coordinate of the k axis. 

The orientation of the director n i is determined by the flow and generally depends on the liquid velocity gradient. The 
defining equation for the director, on the assumption that the inertia of the elements of the microstructure of the anisotropic 

liquid can be neglected, in the linear approximation in the velocity gradient has the form 

On, 
O t  - -  ~ ( ~ , ~ n ,  - ~ , ~ . n ~ ) ,  (1.2) 

where Dni/Dt - - -  f l  i - o~ien e is the Youman derivative with respect to time; the dot above n i denotes an individual derivative 

with respect to time; o~ie -- (1/2)(vie - vei) is the vorticity tensor; ), is a phenomenological constant; and nem i = nr i. 
According to (1.2), the orientation of the director n i depends essentially on the dimensionless constant 3.. For [ 3, [ < 

1 the director periodically changes in time [12] and its orientation depends on the flow velocity gradients. Equations (1.1) and 

(1.2) in this particular case were used in [1] to construct a structural-phenomenological theory of the stressed state in a dilute 

suspension of rigid ellipsoids of rotation with a Newtonian dispersion medium. 

In this study we consider anisotropic liquids for which [ ~ [ > 1 and the stress in the state of rest coincides with the 
isotropic hydrostatic pressure, i.e., liquids for which/~1 - - - -  0. 

The director n i for [ ), I >_ 1 in steady-state flows assumes a stationary orientation, which is independent of the 

velocity gradients. Equation (1.2) in simple slip flow 

u -- O , e  = K x ,  v - -  0 (K--const) (1.3) 

has the stationary solution 
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ct~fl - I + l '  ~ = 2"' (1.4) 

which does not depend on the slip velocity K. Here/3, ff are angles that specify the position of the director in the laboratory 

frame Oxyz (n x = cos ~ sin r ny = sin/3 sin r n 2 = cos if);/3 is the angle between the Ox axis and the projection of the 

vector n e onto the Oxy plane; ~: is the angle between the Oz axis and the vector n i. The orientation of the director depends on 
the value of the constant X. The angle/3 in (1.4) varies between the limits 7r/4 _< t3 ~r/2 for X >__ 1 and-~r /4  <_ /3 _< 0 for X 

- ~ 1 .  

The orientation of the director changes with the geometry of the flow. In a uniaxial tensile flow (v x = - (q /2)x ,  Vy = 

- (q /2 )y ,  v z = qz) the director is oriented collinearly to the Oz for X _> 1 and parallel to the Oxy plane for X _< - 1 .  The 

steady-state orientation of the director does not depend on the strain rate q. 
According to [14], the rheological equation (1.1) can be written as a generalized Newton's law 

,to + No = ~,.:,,, (1.5) 

with a viscosity tensor of the form 

rlq ~ = 2 ,uI~  +/~zn~in + 4ix3no~gckno, (1.6) 

where 4n(iaj)(kne) = niajkn e + njaikne + niajen k + njaijnk; symmetrization is carried out over the indices in parentheses; and 

Iijke = (aikSje + diie~ijk)/2 is a unit tensor of rank four. 
According to (1.6), the effective viscosity of anisotropic liquids (1.1), (1.2) for Ixl = 0 and I X I -> 1 in steady-state 

flows does not depend on the flow velocity gradients. In contrast to the case with Newtonian liquids, however, it does depend 

on the orientation of the director n i. This enables us to speak of the anisotropy of the liquid (1.1), (I .2) relative to the direction 
of the director ni, which appears when it flows. With allowance for this circumstance in [14] we introduced the longitudinal 

'7 II and transverse 7/j. (relative to n i) viscosity of  the liquid (I .  1), (1.2). These viscosity coefficient have a particular (basic) 
importance: the viscosity relative to other directions is expressed in terms of them. 

The anisotropy of the viscosity in the liquid (1.1), (1.2) leads to anisotropy of its other characteristics. The existence 

of the basis viscosities 71 II and ~.L determines the existence of different coefficients of translational friction ~']1 and transverse 
g'j. of a spherical particle during motion in the liquid (1.1), (1.2) along and transverse to the director. According to [15], the 

drag acting on a spherical particle moving with velocity U k in an anisotropic liquid (1.1), (1.2) can be written as --~ikUk, 
where 

(1.7) 

is the tensor of translational friction of a spherical particle in an anisotropic liquid. 

The basic viscosities V II and ~/j. can be given in terms of the rheological constants Ix, IX2, IX3. For this purpose it is 
necessary to write the rheological equation for the stresses of  the liquid (1.1), (1.2), according to [14], in the form 

,~ + t ~  = 2,7:,,, + 2(,7, - ,7ti~ ~ 

and compare it with (1.1). When ~ = -4ix 3 [14] is taken into account this gives us ~/j. = Ix, ~711 = Ix + Ix3- 
Description of the behavior of the microstructure of a liquid medium by means of a director found application in the 

continuum theory of liquid crystals [16]. The defining equations obtained in [17] and used to describe the dynamic properties 

of nematie liquid crystals are similar to Eqs. (1.1), (1.2). 

2. Structural  Theory.  The model of a uniaxial dumbbell is used as hydrodynamic model of disperse particles having 

axial and central symmetry as well as suspensions with an isotropic dispersion medium [2-11]: it is a system of two point 
centers of  the hydrodynamic interaction of the model with the environment, the centers being joined by a rigid link (axis) of 
length L. 
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The point center of the dumbbell interacts with the dispersion medium as a spherical particle, i.e., as it flows with 

velocity u i past the point center of the dumbbell the anisotropic medium acts on that point with a force given by (ijuj ((ij is the 

tensor of translational friction (1.7)). 
It is assumed that on the one hand suspended particles modeled by the dumbbells are of a size such that the anisotropic 

dispersion medium interacts with them as with hydrodynamic bodies but on the other hand the disperse particles should be 

sufficiently small so that within the neighborhood of each the velocity v i of the dispersion medium should be a uniform function 

of the coordinates, v i = w ik r  k + "/ikrk (r k is the radius-vector specifying the position of the point in the neighborhood in the 
laboratory frame Oxyz, whose origin coincides with the midpoint of the dumbbell axis). It is also assumed that the disperse 

particles have zero buoyancy. 
With these assumptions, the hydrodynamic forces f~ that the anisotropic dispersion medium exerts on the center of 

hydrodynamic interaction of the dumbbells are given by fi = ~ij(VjkRk - -  Rj  - V0j ) where v0j is the velocity of  migration of 
the particle center relative to the dispersion medium; R k is the radius-vector of the point center of the dumbbell resistance, 

assuming the value (L/2)v k for the other point center; and uk is the unit vector characterizing the orientation of the dumbbell 

disperse particle in the given Oxyz coordinate system. The main vector of the hydrodynamic forces F i acting on the dumbbell 

then has the form 

F~ = -2~#a~.. (2.1) 

The defining equation for the vector ~'i characterizing the orientation of the dumbbell particle is obtained in much the 
same way as in [2] by vector multiplication of the equation of rotational motion of the disperse particle *~i = Mi by the vector 

Pi: 
1 

s(~ + ~,;,,)= ~L~(~j;, 
(2.2) 

Here *~i = I[t, •  is the angular momentum of the particle; I is the moment of inertia of the dumbbell particle relative to the 

axis passing through the center of the dumbbell axis and perpendicular to it; M i = (1/2)L2eijkpj(~keVe,Fs - ~ke/,e) is the main 
moment of hydrodynamic forces relative to the midpoint of the dumbbell axis; eij k is the Levi-Civita tensor; and N i = 

/'i --Wik~'k- 
For ~']l = ~'.t = J" Eq. (2.2) coincides with the defining equation for a vector v i obtained in [2] for suspensions with 

an isotropic dispersion medium. 
The inertial forces and the moment of  the inertial forces of disperse particles in suspensions are very small and are 

usually ignored in the rheology of suspensions. In this case the equation of translational motion for a disperse particle is F i = 

0, from which, according to (2.1), it follows that ~0j = 0, i.e., the disperse particles do not migrate relative to the dispersion 

medium. Equation (2.2) becomes 

(~ .  - ~ v ; , ,  + ~ v v,)(/, - %2'k) 
+ ~ , ~ v k ~ v  i = O. (2.3) 

In much the same way as in [2] within the framework of the structural theory we f'md an expression for the rate of 

dissipation of mechanical energy per unit volume of the suspension under consideration, 

w = ~ + ~Vo(L ' / 2 ) I~  ( ~ )  - ~o~,j~ (~, ,~)  + fg.,,.rs, (","~)I, 
(2.4) 

where Vr is the rate of energy dissipation per unit volume of dispersion medium in the absence of disperse particles; N O is the 
number of disperse particles per unit volume of suspension; the angular brackets denote averaging, which can be done with 

the aid of the distribution function of the angular positions of the vector ~i, which is a solution of the equation 

oF a (2.5)  
= o. 
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3. S t ruc tu r a l -Phenomeno log i ea l  Theory.  According to (2.4), the stress tensor Eij in the suspension considered should 

be determined by relations of the type r~ij = aij + N O < tij > ,  tij = tij(3,km, ~en, Us, Np) (aij is the stress tensor in the dispersion 

medium in the absence of suspended particles, N O < tij > is the stress caused by the presence of N O suspended particles per unit 

volume of suspension). The tensor tij should be a polynomial function of the matrix of its arguments, which is linear in/~kmTme 

and ~krnNm . By virtue of the symmetry of the dumbbell particle about its center that function, furthermore, should be invariant 

under reversal of the direction of u s. The phenomenological equation for tij is obtained in a way similar to that in [13]: 

(3.1) 

The phenomenological constants a i (i = 1,10) in (3.1) are found by comparing the dissipation rate of  mechanical energy 

per unit volume of suspension (2.4)determined in the structural theory, andthe rate determined as in [2] from the formulaW = 

W + N O < tij3,ij > - N O < Nig i > within the framework of the phenomenological approach, where gi is the right side of  (2.2). 

Taking <t i j~j> - <t j iv j> = < g i  > into account, we obtain a 1 = a 2 = a 3 = a 4 = a 5 = a 6 = a 8 = a 9 = 0, a 7 = L2/2, 
al0 = - L 2 / 2 ,  which allows us finally to write the defining equation for the stress tensor Eij: 

(3.2) 

If the disperse particles, modeled by dumbbells, have a constant dipole moment Pi = q~i, then in an external uniform 

electric field E i such particles are acted upon by a couple with moment Mi e = qeiemptErn, tending to turn the particle in the 

direction of  the electric vector E i. 
If  the disperse particles are sufficiently small, we must take into account their rotational Brownian motion caused by 

the effective moment of the forces 

M~ = - Teu v ~dln.F/ #v., 

(T is the temperature in units of  energy). When the moment of the inertial forces of the disperse particles is not taken into 

consideration the def'ming equation for the vector vi has the form 

o 

L 2 - -  ( O l n F  alnF / 
+ q ( e ,  - e z r a , )  + r L - E -  ' - -- 0 .  

(3.3) 
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Equations (1.1), (1,2), (2.3) (or (3.3)), (2.5), (3.2) constitute a closed system of equations defining the stressed state in a dilute 

suspension of  dumbbell particles in an anisotropic dispersion medium. 

4. Steady-State Flow of Simple Shear. An example of the use of the theological equations obtained we study the effect 

of the anisotropy of a dispersion medium on the rheological behavior of a dilute suspension of dipole dumbbells in an 

anisotropic liquid (1.1), (1.2) for ] X I -> 1,/z 1 = 0 in simple shear flow (1.3) in an electric field E x = E, Ey = 0, E z = 

0 (E is constant). The solution (1.4) of Eq. (1.2) shows that the electrically neutral director n i of an anisotropic dispersion 

medium (1.1), (1.2) is oriented in the steady state in planes perpendicular to the Oz axis at an angle/3 to the Oxz coordinate 

plane; 3 is determined by (1.4). 

It follows from (3.3) that dipole disperse dumbbell particles also assume a steady-state orientation in both an isotropic 

(A ----. I) dispersion medium in a plane perpendicular to the Oz axis at an angle ~p to the Oxz  plane, which is determined by 
the equation 

1 
cos2~o - (A - l)co,~osin/~sin(~o - fl) -- ~-sin~o = 0, 

(4.1) 
Kr ~ L2 ~ 

w h e r e t r = ~ ' ~ ; r  = ~ A - - ~ -  

Figures 1 and 2 show graphs of ~p = ~p(tr). Curves 1-3 of Fig. 1 correspond to 3 = 45, 60, and 75 ~ for ix = 0.5 and 

curves 1-5 of Fig. 2 correspond to A = 0.2, 0.5, 1, 1.5, and 5.0 for 3 = 60 ~ Curve 4 (Fig. 1) and 3 (Fig. 2) corresponds 
to an isotropic dispersion medium (ix = 1). 

We found that as tr increases the hovering angle of the dumbbell particle increases from ~o 0 = 0 for a = 0 to ~pQ., 
whose value depends on the anisotropy of the medium: ~o** = 90 ~ for A < 1 and r = arctg{(1 + Atg23)/[(A -- 1)tg~]} 

for A > 1. The hovering angle of dumbbell particles in an anisotropic medium in which iX < 1 is smaller than in an isotropic 

medium (iX = 1) when r < 3, and larger when r > 3 (Fig. 1); the reverse is true in an anisotropic medium in which iX > 1 
(Fig. 2). 

With the disperse particles in a steady-state orientation the distribution of their angular positions, which generally is 

found from the solution of  Eq. (2.5), is transformed into a Dirac delta function concentrated in the hovering angle ~o. The 

effective viscosity of the suspension, determined from (3.2), therefore, becomes 

1 
I t  = / ~  + ~N~' lcos~ + (A - 1)cos~sinflsin(~ + fl) ], (4.2) 

where/z a -- (r.xy + Eyx)/2K; #E = /z + /z2(X 2 -- 1)/4X 2 + /~3 is the effective viscosity of  the anisotropic dispersion medium 

(1.i), (1.2) for [ X I -> 1,/~x = 0 in a simple shear flow (1.3). 

According to (4.2), the anisotropic properties of the dispersion medium for A > 1 increase the increment v = (#a - 

/~E)/N03, of the effective viscosity ~ of the suspension, and for A < 1 decreases the increment, in comparison with an isotropic 
(A = 1) dispersion medium (Figs. 3, 4). 
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Figures 3 and 4 show the graph of v = v(a). Curves 1-5 of Fig. 3 correspond to A = 0.2, 0.5, 1 (isotropic dispersion 

medium); 1.5, 2 for/3 = 60~ curves 1, 2, Fig. 4 - B = 45, 74 ~ for A = 2, curve 3 -- A = 1 (isotropic dispersion medium), 

curves 4, 5 - /3 = 45, 75 ~ for A = 0.2. 

For A > 1 and small a (curves 4, 5 of Fig. 3 and curves i, 2 of Fig. 4) and for A < 1 and large a (curves 1, 2 of 

Fig. 3 and curves 4, 5 of Fig. 4) we note segments where the viscosity increments grow as a increases; those segments are 

not intrinsic to dilute suspensions of rigid particles with an isotropic dispersion medium (A = 1). 

When the suspended particles reach their limiting orientation ~ ,  the viscosity increment reaches its limiting value v~. 

which depends on the rheological parameters of the dispersion medium. For A > i the limiting values of  the increment %. 

are nonzero (curves 4, 5 of Fig. 3 and curves 1, 2 of Fig. 4). At the same time for A = 1 (isotropic dispersion medium) and 

A < 1, as in [2-11], v~. = 0 (curves 1-3 of Fig. 3 and curves 3-5 of Fig. 4). This means that the use of  uniaxial dumbbells 

as a hydrodynamic model of disperse particles, making it possible to predict the existence of a limiting value of  the increment 

of the effective viscosity Po. as a --, co is smaller than the increment v0 as a ~ 0, results in an underestimation of  its values. 

This drawback of the theory can be eliminated only by using a hydrodynamic model having volume (ellipsoid of  rotation) or 

transverse dimensions (triaxial dumbbell). 

Formulas (4.1), (4.2) were used to determine v = v(a) in a dilute suspension of dumbbell dipole particles in N-(n- 
methoxybenzilidene)-n-butylaniline (MBBA). It is known [16] that MBBA, being a nematic liquid crystal, at 22~ is an 

anisotropic liquid with X = 1.04, B = 82 ~ Since no experimental data on ~'11 and ~'• are available for MBBA, in Fig. 5 we 

show v = v(a) for various values of A. Curves 1-5 of  Fig. 5 correspond to & = 2.0, 1.5, 1 (isotropic dispersion medium), 

0.66, and 0.5. 

The results obtained in this study can be used to construct a theory of dynamic behavior of  impurities in liquid crystals 

as well as the influence of  impurities on the rheological behavior of liquid crystals. 
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